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Appendix A
Here, we show the derivation of the weak form of the vector-valued Helmholtz equation for our
boundary conditions. As a starting point, recall that the general variational form of the vector
Helmholtz equation is given by:

∫Ω
𝑘2Φ ⋅ E 𝑑𝑉 − ∫Ω

∇𝐽E ∶ ∇𝐽 Φ 𝑑𝑉 + ∫𝜕
Φ ⋅ ∇𝐽E 𝑑A = 0 (1)

Where : denotes the double dot-product. The boundary conditions we applied within our
model were given by:

𝜕E
𝜕𝑛 |𝜕Ω𝑃 = 𝜕E

𝜕𝑛 |𝜕Ω𝑊 = 0,Ω ∈ ℝ3

lim
𝑟→∞

E = 𝜖

To simplify modelling of far-field radiation, we used a coordinate transformation as shown in
(Frei, 2015), where we applied a coordinate transform 𝑥 → 𝛼 tanh 𝑥, 𝑦 → 𝛽 tanh 𝑦 to mathemati-
cally extend the domain to infinity without needing to construct a larger grid, where, 𝛼 and 𝛽 are
respectively the half-length and half-width of the domain bounding box. Physically, such a coordi-
nate transform approximately replicates an open boundary that allows outgoing electromagnetic
waves to radiate outwards in all directions, allowing the radiative boundary conditions to be im-
posed without needing to discretize an infinite domain.

However, the direct application of the coordinate transformation results in significant mathe-
matical complexities due to the dependence of the representation of the variational form on the
choice of coordinates. Thus tensors will be used instead to give expressions of physical laws that
are invariant under coordinate transformations. From this point on, all expressions of the weak
form will be given in tensors unless otherwise specified. All tensors are assumed to be within Eu-
clidean space where upper and lower indices are equivalent, that is, 𝐴𝑖 = 𝐴𝑖. The Einstein summa-
tion convention is assumed, in which repeated indices are implicitly summed over, and all indices
take the numerical values of 𝑖 = 1, 2, 3 unless otherwise specified.

To begin, the weak form may be expressed in tensor notation as:

∫Ω
𝑘2Φ𝑖𝐸𝑖 𝑑𝑉 − ∫Ω

𝜕𝑗𝐸𝑖𝜕𝑗Φ𝑖 𝑑𝑉 + ∫𝜕Ω
Φ𝑖𝜕𝑗𝐸𝑖 𝑑𝐴𝑗 = 0 (2)

One may reduce by one dimension to just consider the 2D case, as was done to simplify the
problem for this initial stage of research:

∫Ω
𝑘2Φ𝑖𝐸𝑖 𝑑𝐴 − ∫Ω

𝜕𝑗𝐸𝑖𝜕𝑗Φ𝑖 𝑑𝐴 + ∫𝜕Ω
Φ𝑖𝜕𝑗𝐸𝑖 𝑑𝑥𝑗 = 0 (3)

The old coordinates are denoted 𝑥𝑖 = x = (𝑥, 𝑦), and new coordinates denoted 𝑥𝑘 = x′ = (𝑥′, 𝑦′)
where 𝑥′ = 𝑥′(𝑥) and 𝑦′ = 𝑦′(𝑦). A change of variables was applied on the weak form 𝑥𝑖 → 𝑥𝑘. On the
first integral term, the Kronecker delta was used to relabel indices from 𝑖 → 𝑘, by the relationships
Φ𝑖 = 𝛿𝑘

𝑖 Φ𝑘, 𝐸𝑖 = 𝛿𝑖
𝑘𝐸𝑘, from which one can substitute into the first integral term to obtain:

∫Ω
𝑘2Φ𝑖𝐸𝑖 𝑑𝐴 = 𝑘2

∫Ω
𝛿𝑘

𝑖 Φ𝑘 𝛿𝑖
𝑘𝐸𝑘 𝑑𝐴 (4)
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The two Kronecker deltas are contracted over both of their indices, so 𝛿𝑘
𝑖 𝛿𝑖

𝑘 = 𝛿𝑖
𝑖 = 𝛿1

1 +𝛿2
2 +𝛿3

3 = 3.

Therefore the first term further simplifies to 3𝑘2
∫Ω

Φ𝑘 𝐸𝑘 𝑑𝐴. For the second term, the chain rule

𝜕𝑗 = 𝜕𝑥𝑘

𝜕𝑥𝑗
𝜕

𝜕𝑥𝑘 = 𝜕𝑗𝑥𝑘 𝜕𝑘 may be used to rewrite derivatives in terms of the new coordinates 𝑥𝑘. After
substitution one finds:

∫Ω
𝜕𝑗𝐸𝑖𝜕𝑗Φ𝑖 𝑑𝐴 = ∫Ω

(𝜕𝑗𝑥𝑘)𝜕𝑘𝐸𝑖(𝜕𝑗𝑥𝑘)𝜕𝑘Φ𝑖 𝑑𝐴 (5)

Where, after rearrangement and using the Kronecker delta for relabeling the 𝐸 and Φ indices
(as shown previously with the first term), becomes:

∫Ω
(𝜕𝑗𝑥𝑘)(𝜕𝑗𝑥𝑘)𝜕𝑘𝛿𝑖

𝑘𝐸𝑘𝜕𝑘𝛿𝑘
𝑖 Φ𝑘 𝑑𝐴 (6)

Taking out the Kronecker deltas allows for further simplification, where 𝛿𝑖
𝑘𝛿𝑘

𝑖 = 3 due to the
double contraction previously explained:

∫Ω
𝛿𝑖

𝑘𝛿𝑘
𝑖 (𝜕𝑗𝑥𝑘)(𝜕𝑗𝑥𝑘)𝜕𝑘𝐸𝑘𝜕𝑘Φ𝑘 𝑑𝐴 = 3 ∫Ω

(𝜕𝑗𝑥𝑘)(𝜕𝑗𝑥𝑘)𝜕𝑘𝐸𝑘𝜕𝑘Φ𝑘 𝑑𝐴 (7)

The third term may be simplified via the tensor transformation law 𝑑𝑥𝑗 = 𝜕𝑥𝑗

𝜕𝑥𝑘 𝑑𝑥𝑘 = 𝜕𝑘𝑥𝑗𝑑𝑥𝑘,
from which one may obtain:

∫𝜕Ω
Φ𝑖𝜕𝑗𝐸𝑖 𝑑𝑥𝑗 = ∫𝜕Ω

Φ𝑖𝜕𝑗𝐸𝑖𝜕𝑘𝑥𝑗𝑑𝑥𝑘 (8)

Now substituting in 𝜕𝑗 = 𝜕𝑗𝑥𝑘 𝜕𝑘 and the two Kronecker delta identities Φ𝑖 = 𝛿𝑘
𝑖 Φ𝑘 and 𝐸𝑖 = 𝛿𝑖

𝑘𝐸𝑘

the result is:

∫𝜕Ω
𝛿𝑘

𝑖 Φ𝑘𝜕𝑗𝑥𝑘 𝜕𝑘𝛿𝑖
𝑘𝐸𝑘 𝜕𝑘𝑥𝑗𝑑𝑥𝑘 (9)

Where, after another double contraction over the Kronecker deltas and rearranging, noting that
𝜕𝑗𝑥𝑘 𝜕𝑘𝑥𝑗 = 1, gives:

3 ∫𝜕Ω
Φ𝑘𝜕𝑗𝑥𝑘 𝜕𝑘𝑥𝑗 𝜕𝑘𝐸𝑘 𝑑𝑥𝑘 = 3 ∫𝜕Ω

Φ𝑘𝜕𝑘𝐸𝑘 𝑑𝑥𝑘 (10)

Altogether, after substitution of all simplified terms and ordering the terms such that the quasi-
linear term is second due to software requirements, one finally obtains the weak form in the trans-
formed coordinates:

−3 ∫Ω
𝜕𝑗𝑥𝑘 𝜕𝑗𝑥𝑘 𝜕𝑘𝐸𝑘𝜕𝑘Φ𝑘 𝑑𝐴 + 3𝑘2

∫Ω
Φ𝑘 𝐸𝑘 𝑑𝐴 + 3 ∫𝜕Ω

Φ𝑘𝜕𝑘𝐸𝑘 𝑑𝑥𝑘 = 0 (11)

After which some algebraic simplifications gives the most simplified general form:

− ∫Ω
𝜕𝑗𝑥𝑘 𝜕𝑗𝑥𝑘 𝜕𝑘𝐸𝑘𝜕𝑘Φ𝑘 𝑑𝐴 + 𝑘2

∫Ω
Φ𝑘 𝐸𝑘 𝑑𝐴 + ∫𝜕Ω

Φ𝑘𝜕𝑘𝐸𝑘 𝑑𝑥𝑘 = 0 (12)

In typical vector calculus notation rather than tensor notation, this may alternatively be written
as:

− ∫Ω
(∇𝐽x′ ∶ ∇𝐽x′)(∇ ⋅ Ẽ)(∇ ⋅ Φ) 𝑑𝐴 + 𝑘2

∫Ω
Φ ⋅ Ẽ 𝑑A + ∫𝜕Ω

Φ ⋅ (∇ ⋅ Ẽ) 𝑑x = 0 (13)

When applying boundary conditions to the boundary integral, the only contribution is that
of the radiative boundary condition, which reduces to the constant Dirichlet boundary condition
Ẽ|𝜕Ω𝐵 = 𝜖 and thus:

∫𝜕Ω
Φ ⋅ (∇ ⋅ Ẽ) 𝑑x = 0 (14)
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And therefore the boundary integral vanishes. We have therefore obtained ourmost simplified
weak form:

− ∫Ω
(∇𝐽x′ ∶ ∇𝐽x′)(∇ ⋅ Ẽ)(∇ ⋅ Φ) 𝑑𝐴 + 𝑘2

∫Ω
Φ ⋅ Ẽ 𝑑A = 0 (15)

Appendix B
In this section, we show the domain parametrization used for our model. To start, the Laplacian
in a generalized Euclidean coordinate transformation 𝑥𝑖 → 𝑥𝑗 takes the form:

∇2 = 𝜕𝑖𝜕𝑖𝑥𝑗𝜕𝑗 + 𝜕𝑖𝑥𝑗𝜕𝑖𝑥𝑗𝜕𝑗𝜕𝑗 (16)

This result is obtained using the transformation rule for partial derivatives, which is simply the
chain rule:

𝜕
𝜕𝑥𝑗 = 𝜕𝑥𝑖

𝜕𝑥𝑗
𝜕

𝜕𝑥𝑖 = 𝜕𝑗𝑥𝑖𝜕𝑖 (17)

Which is then substituted into the definition of the Laplacian∇2 = 𝜕𝑘𝜕𝑘 and distributed to obtain
the result in (16). Using this expression, with the coordinate transforms 𝑥′ = 𝛼 tanh 𝑥, 𝑦′ = 𝛽 tanh 𝑦,
the transformed Laplacian becomes:

∇2 = 𝛼2(1 − 𝑥′2) [
𝜕

𝜕𝑥′ ((1 − 𝑥′2) 𝜕
𝜕𝑥′ )] + 𝛽2(1 − 𝑦′2) [

𝜕
𝜕𝑦′ ((1 − 𝑦′2) 𝜕

𝜕𝑦′ )] (18)

Thus the Helmholtz equation in the aforementioned transformed coordinates has the form:

𝛼2(1 − 𝑥′2) [
𝜕

𝜕𝑥′ ((1 − 𝑥′2) 𝜕
𝜕𝑥′ )] + 𝛽2(1 − 𝑦′2) [

𝜕
𝜕𝑦′ ((1 − 𝑦′2) 𝜕

𝜕𝑦′ )] Ẽ(𝑥′, 𝑦′)

+ 𝑘2Ẽ(𝑥′, 𝑦′) = 0

The geometry of the simulation was parametrized by four constants, the simulation volume
width𝐷 and length𝐿, the primary reflector radius𝑅1, secondary reflector radius𝑅2, opening gap ra-
dius 𝑏 (where the opening is located at the rear of the primary reflector dish), and the primary reflec-
tor anchor point 𝑑1. The primary collector and secondary mirror were respectively parametrized
as follows:

𝑥1(𝑡) = 𝑑1 − 1
2𝑅1

𝑡2, 𝑦1(𝑡) = 𝑡, 𝑡 ∈ [−𝑅1, −𝑏] ∪ [𝑏, 𝑅1]

𝑥2(𝑡) = 𝑑1 − 𝑅1
2 + 1

2𝑅1
𝑡2, 𝑦2(𝑡) = 𝑡, 𝑡 ∈ [−𝑅2, 𝑅2]

The bounding box of the simulation was parametrized as follows, for which 𝑡 ∈ [0, 1]:

𝑥𝑇 (𝑡) = 𝐿𝑡 − 𝐿
2 , 𝑦𝑇 (𝑡) = 𝐷

2
𝑥𝐵(𝑡) = 𝐿𝑡 − 𝐿

2 , 𝑦𝐵(𝑡) = − 𝐷
2

𝑥𝐿(𝑡) = − 𝐿
2 , 𝑦𝐿(𝑡) = 𝐷𝑡 − 𝐷

2
𝑥𝑅(𝑡) = 𝐿

2 , 𝑦𝑅(𝑡) = 𝐷𝑡 − 𝐷
2
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